
RE-Introduction to  
One-Sided communication 

PGAS Languages: 
Coarrays in Fortran 2008  

UPC 

Nathan Wichmann 
wichmann@cray.com 



Outline 

  What is one-sided communication? 
  How do I do this? 
  Why would I want to? 
  Examples and success stories. 
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PGAS programming 
  Partitioned Global Address Space 
  Language level parallelism as opposed to library calls 

•  Extension to C – Unified Parallel C (UPC) 
•  New feature called coarrays in Fortran 2008 (CAF) 

  Single-sided communication as opposed to two-sided MPI 
communication 

  Explicit synchronization required – this is (mostly) implicit in MPI 
  Gives compiler lots of freedom for optimization 
  Many algorithms are very naturally expressed using one-sided 

language level parallelism 
•  Handing off work/data to another pe 
•  Halo exchanges 
•  Mesh manipulation and movement 
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PGAS and Cray 
  Cray has been supporting CAF and UPC since the beginning 

•  Support on the Cray T3E, X1, X2 
  Full PGAS support on the Cray XT 

•  Cray Compiling Environment 7.0 – Dec 08 
•  Full UPC 1.2 specification 
•  Full CAF support – CAF proposed for the Fortran 2008 standard 
•  Hybrid MPI/PGAS codes supported – very important! 

  Fully integrated with the Cray software stack 
•  Same compiler drivers, job launch tools, libraries 
•  Integrated with Craypat – Cray performance tools 
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Special features of Baker relating to CAF/UPC 

  On X1 and X2, the custom processor directly emits 
references for any memory location in the machine. Loads/
stores can be done to any global address in the system 

  On Baker the Gemini NIC used to ‘extend’ address space of 
Opteron references to access memory on remote nodes 
•  Fortran or C compilers recognize CAF/UPC references and 

generates appropriate messages to Gemini to load from or store to 
remote memory 

•  Users can stride on local offsets or across processor space with any 
stride, including Gather/Scatter 
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Fortran 2008 - Parallel programming 

 Fortran 2008 is a natively parallel language 

 SPMD programming model 
 Simple syntax for one-sided communication 
  Image synchronization 
 Coordinated program startup and termination 
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Fortran 2008 - programming model 
  Fortran 2008 is a natively parallel language 

•  SPMD programming model 
•  Data transfers coded using normal assignment statements 

  Executable is replicated across processors (MPI-like) 

  Each instance is called an “IMAGE” 

  Each image has its own data objects 

  Each image executes asynchronously except when syncs 
are indicated 
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Coarray Fortran:  Basics and terminology 
 Any time a coarray appears without [ ]’s, the 

reference is to the data on the local image 
 The number inside the [ ]’s can reference any image 

in the job, including myself 
  If a reference with [ ]’s appears to the right of the =, 

it is often called a “get” 
  If a reference with [ ]’s appears to the right of the =, 

it is often called a “put” 

   What does this do?      a(:)[ri] = b(:) 
The statement copies, or “puts” the local “b” into the “a” on image  “ri” 
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Fortran 2008 - Parallel programming 
  Declaration and allocation 

  real(8), ALLOCATABLE :: rcvbuf(:,:)[*] 
! Allocate m*n elements on each processor 
  ALLOCATE( rcvbuf(m,n)[*] ) 

  Reference 

!  Put data from my local buf into rcvbuf on image k   
  rcvbuf(:,:)[k] = localbuf(:,:) 

  PE information 

  this_image(), num_images() 

  Syncronization 
  sync all() 
  sync images(array_of_images) 



Array Example 

Real(8) a(3) 
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Coarray Example 

Real(8) a(3)[*] 
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Fortran 2008 – Basic “Put” 

real :: s(100) 
real,allocatable :: a(:)[:]     ! A is a “Coarray” 

allocate (a(100)[*]) 
a = 10. 
s = 11. 
mype = this_image() 

if (mype > 1)  a(:)[mype-1] = s(:) 
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Fortran 2008 - synchronization 
Explicit statements: 

sync all 
sync images (array_of_images) 
sync memory 
critical / end critical 
lock / unlock 

Implicit synchronization: 
allocation of a coarray 
deallocation of a coarray  (either explicit or implicit) 

RYO synchronization: 
 atomic_ref / atomic_def 
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Halo Exchange: MPI 
doubleprecision ai(ip,ihp,6)  
...   
call mpi_isend ( ai(1,1,1),   ihp*ip,   mpi_real, imgi(myp+1), & 
                        9905, mpi_comm_world, mpireq(1), mpierr ); 
call mpi_isend ( ai(1,1,2), 2*ihp*ip,   mpi_real, imgi(myp-1), & 
                        9906, mpi_comm_world, mpireq(2), mpierr ); 
call mpi_irecv ( ai(1,1,4),   ihp*ip,   mpi_real, imgi(myp-1), & 
                        9905, mpi_comm_world, mpireq(3), mpierr ); 
call mpi_irecv ( ai(1,1,5), 2*ihp*ip,   mpi_real, imgi(myp+1), & 
                        9906, mpi_comm_world, mpireq(4), mpierr ); 
call mpi_waitall ( 4, mpireq, mpistat ) 

Each PE must make calls to MPI to do BOTH the send and the receive.  Both PE’s 
must know the communication will happen and perform the message passing “at 
the right time”. 
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Halo Exchange: Coarray Fortran 

Real(8) ai(ip,ihp,6)[*] 
.... 
ai(:,:,4:4) = ai(:,:,1:1)[img(myp-1)] 
ai(:,:,5:6) = ai(:,:,2:3)[img(myp+1)] 
sync all() 

Simple, transparent syntax. The other PE does not need to directly 
participate 

One only needs to know there are not race conditions on the data. 

February 10 Slide 15  



What if one cannot change variables? 
  Subroutine dummy argument 

  SUBROUTINE fft_transpose( zstick, . . . ) 
  COMPLEX :: zstick( * ) 

  Define derived type 

  TARGET zstick 

  TYPE CAFP 
    COMPLEX, DIMENSION(:), POINTER :: zstick 
  END TYPE CAFP 
  TYPE (CAFP) image[*] 
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What if cannot change   (cont’d) 
  Set pointer 

  image%zstick => zstick(1:n) 
  sync all() 

  Reference zstick(i) on proc k 

  image[k]%zstick(i) 
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Fortran 2008 - pointer components  
subroutine sort(t,n) 
integer :: n 
real,target :: t(n) 

type cafp 
    real,pointer :: t(:) 
end type cafp 
type(cafp) :: image[*] 

image%t => t         !  Point at the remote data 
sync all                   !  Sync to make sure everyone has completed the pointing 
x = image[1]%t(1)  ! Reference the remote data 
… 
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CAF works well with OpenMP 

!$omp parallel do … 
do j=1,m 
 do i=1,n 
  target(i,j)[target_proc] = source(i,j) 
enddo;enddo 

All OMP threads are local to an image 
(i.e. Multi-level parallelism) 

Uses all OMP threads to “put” data into 
the target location on the target 
processor. 
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What is UPC? 
  Unified Parallel C 
  Syntactic extension to Standard C 
  Designed by IDA CCS, UC-Berkeley, LANL 
  SPMD plus HPF-like data and work distribution features 
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UPC Examples 

shared double a[3][THREADS]; 
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Halo Exchange: Cray UPC Subset 

shared double ai[6][ihp][ip][THREADS];   
...   
for ( j=0; j<ihp; j++ ){   

 for ( i=0; i<ip; i++ ){   
  ai[3][j][i][MYTHREAD] = ai[0][j][i][thd[myp-1]] 
  ai[4][j][i][MYTHREAD] = ai[1][j][i][thd[myp+1]]; 
  ai[5][j][i][MYTHREAD] = ai[2][j][i][thd[myp+1]]; 
 }   

} 
upc_barrier(); 

Advantages very similar to CAF. 
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Advantages of One-Sided communication 
  Easier to program (See Halo Exchange and Random Access) 

•  Don’t have to write both send and receive 

•  More transparent what is going on 

  Enables new algorithms (See Dynamic Mesh CFD from AHPCRC) 
•  Only one PE needs to do the communication.  Data can be retrieved and modified without 

coordination with PE holding the data 
•  More freedom in when and where the communication is done. 

  Reduced communication time overhead, hence better scalability (for 
supporting hardware) 

  Can spread out communications / Easier to Mix computation and 
communication 
•  Collectives like MPI_ALLTOALL concentrate communication 

•  Perhaps better to get and put data as you need it.  
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Good Practices for UPC/CAF/shmem, etc. 
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  Use 4/8 byte sized globally addressable variables 
  Try to “PUT” data instead of “GET” data 
  Code to overlap communication with computation 

  Depends on how “soon” you reference the variable 
again and on the quality of the compiler 

  Hardware is designed to support this 
  Reduces communication hot spots 

  Avoid use of strict shared types in UPC when possible 
(increases memory synchronization requirements) 

  Try to avoid generalized scatter/gather in inner loops 
(unless overlapped with computation) 



PGAS in practice: 

Examples of how PGAS was, can, 
and will be used 

February 10 Slide 25  



Smoothing out Communication 
  MPI collectives can often focus all communication into a 

specific time and place 
  Can use CAF/UPC to spread that communication out and 

overlap with computation 
  Simplified MVH3: 

do i=1,many 
  call sweepx         !  All compute, no communication 
  call mpi_alltoall   !  Intense communication 
  call sweepy         !  All compute, no communication 
  call mpi_alltoall   !  Intense communication 
  call sweepz         !  All compute, no communication 
  call mpi_alltoall   !  Intense communication 
enddo 
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Smoothing out Communication 
  Put data to next location as you compute it 

do i=1,many 
  call sweepx_put_to_y         ! Compute, with communication spread out 
  call sweepx_put_to_y         ! Compute, with communication spread out 
  call sweepx_put_to_y         ! Compute, with communication spread out 
enddo 
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GTC: Online/asynchronies diagnostic processing* 
  GTC requires diagnostic to be run at the same time as 

simulation 
•  Too much data to store for post-processing 
•  Does not need to prevent the simulation from proceeding 

  One group of processors can process data while main 
simulation process 
•  How does one coordinate the data transfer?  
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* Thanks to Scott Klasky of ORNL for this idea 



GTC:  Online/asynchronies diagnostic processing 
 Simulation group 

do i=1,timestep 

  call main_computation 

  call check_if_diagnostic_buffer_read 

  call put_data_to_diag 

  call inform_diag_data_is_ready 

enddo 

 Diagnostic Group 

do i=1,timestep 

  call set_buffer_ready_flag 

  call wait_for_data 

  call perform_diagnostics 

  call store_diagnostic_results 

enddo 
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Simple double buffer can help reduce synchronization cost to close to zero 



UPC Random Access:   
Designed for Speed 

  This version of UPC Random Access was originally written in 
Spring 2004 

  Written to maximize speed 

  Had to work inside of the HPCC benchmark 

  Had to run well on any number of CPUs 

  Also happens to be a very productive way of writing the 
Global RA. 
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Productivity:  Fewer lines of code 

UPC VERSION 
#pragma _CRI concurrent 
for (j=0; j<STRIPSIZE; j++)  

 for (i=0; i<SendCnt/STRIPSIZE; i++) { 
  VRan[j] = (VRan[j] << 1) ^ ((s64Int) VRan[j]< ZERO64B ? 

POLY : ZERO64B); 
  GlobalOffset = VRan[j] & (TableSize - 1); 

  if (PowerofTwo) LocalOffset=GlobalOffset>>logNumProcs ;  
  else            LocalOffset=(double)GlobalOffset/

(double)THREADS; 
    WhichPe=GlobalOffset-LocalOffset*THREADS; 
    Table[LocalOffset][WhichPe] ^= VRan[j] ; 
 } 

} 

BASE VERSION 
NumRecvs = (NumProcs > 4) ?(Mmin(4,MAX_RECV)) : 1; 
  for (j = 0; j < NumRecvs; j++)  

MPI_Irecv(&LocalRecvBuffer[j*LOCAL_BUFFER_SIZE], 
localBufferSize,INT64_DT, MPI_ANY_SOURCE, 
MPI_ANY_TAG, MPI_COMM_WORLD,&inreq[j]); 

while (i < SendCnt) { 
do { 
MPI_Testany(NumRecvs, inreq, &index, &have_done, 

&status); 
if (have_done) { 
 if (status.MPI_TAG == UPDATE_TAG) { 
   MPI_Get_count(&status, INT64_DT, &recvUpdates); 
bufferBase = index*LOCAL_BUFFER_SIZE; 
for (j=0; j < recvUpdates; j ++) { 
 inmsg = LocalRecvBuffer[bufferBase+j]; 
 LocalOffset = (inmsg & (TableSize - 1)) - 

GlobalStartMyProc; 
 HPCC_Table[LocalOffset] ^= inmsg; 
 } 
 } else if (status.MPI_TAG == FINISHED_TAG) { 
    NumberReceiving--; 
 } else { 
    abort(); 
 } 
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Productivity :  Fewer lines of code 

UPC VERSION BASE VERSION 

MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], 
localBufferSize,INT64_DT, MPI_ANY_SOURCE, 
MPI_ANY_TAG, MPI_COMM_WORLD,&inreq[index]); 

} 
} while (have_done && NumberReceiving > 0); 
  if (pendingUpdates < maxPendingUpdates) { 
    Ran = (Ran << 1) ^ ((s64Int) Ran <   ZERO64B ? 

POLY : ZERO64B); 
    GlobalOffset = Ran & (TableSize-1); 
    if ( GlobalOffset < Top) 
      WhichPe = ( GlobalOffset / (MinLocalTableSize + 

1) ); 
   else 
    WhichPe = ( (GlobalOffset - Remainder) / 

MinLocalTableSize ); 
   if (WhichPe == MyProc) { 
    LocalOffset = (Ran & (TableSize - 1)) - 

GlobalStartMyProc; 
    HPCC_Table[LocalOffset] ^= Ran; 
   } 
   else { 
    HPCC_InsertUpdate(Ran, WhichPe, Buckets); 
        pendingUpdates++; 
   } 
   i++; 
 } 
 else { 
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Productivity :  Fewer lines of code 

UPC VERSION 
BASE VERSION 

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE); 
   if (have_done) { 
    outreq = MPI_REQUEST_NULL; 
    pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, 

localBufferSize, &peUpdates); 
    MPI_Isend(&LocalSendBuffer, peUpdates, INT64_DT, 

(int)pe, UPDATE_TAG, MPI_COMM_WORLD, &outreq); 
    pendingUpdates -= peUpdates; 
   }}} 
while (pendingUpdates > 0) { 
do { 
MPI_Testany(NumRecvs, inreq, &index, &have_done, 

&status); 
if (have_done) { 
  if (status.MPI_TAG == UPDATE_TAG) { 
   MPI_Get_count(&status, INT64_DT, &recvUpdates); 
   bufferBase = index*LOCAL_BUFFER_SIZE; 
  for (j=0; j < recvUpdates; j ++) { 
   inmsg = LocalRecvBuffer[bufferBase+j]; 
   LocalOffset = (inmsg & (TableSize - 1)) - 

GlobalStartMyProc; 
   HPCC_Table[LocalOffset] ^= inmsg; 
   } 
} else if (status.MPI_TAG == FINISHED_TAG) { 
  NumberReceiving--; 
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Productivity :  Fewer lines of code 

UPC VERSION 

BASE VERSION 
} else { 
  abort();} 
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], 

localBufferSize,INT64_DT, MPI_ANY_SOURCE, MPI_ANY_TAG, 
MPI_COMM_WORLD,&inreq[index]); 

}} while (have_done && NumberReceiving > 0); 
    MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE); 
    if (have_done) { 
      outreq = MPI_REQUEST_NULL; 
      pe = HPCC_GetUpdates(Buckets,     LocalSendBuffer, 

localBufferSize, &peUpdates); 
    MPI_Isend(&LocalSendBuffer, peUpdates, INT64_DT, 

(int)pe, UPDATE_TAG, MPI_COMM_WORLD, &outreq); 
    pendingUpdates -= peUpdates; 
    } } 
for (proc_count = 0 ; proc_count < NumProcs ; +

+proc_count) { 
  if (proc_count == MyProc) { finish_req[MyProc] = 

MPI_REQUEST_NULL; continue; } 
  MPI_Isend(&Ran, 1, INT64_DT, proc_count, 

FINISHED_TAG,MPI_COMM_WORLD, finish_req + proc_count); 
  } 
while (NumberReceiving > 0) { 
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Productivity :  Fewer lines of code 

UPC VERSION 
BASE VERSION 

MPI_Waitany(NumRecvs, inreq, &index, &status); 
if (status.MPI_TAG == UPDATE_TAG) { 
  MPI_Get_count(&status, INT64_DT, &recvUpdates); 
  bufferBase = index * LOCAL_BUFFER_SIZE; 
for (j=0; j < recvUpdates; j ++) { 
  inmsg = LocalRecvBuffer[bufferBase+j]; 
  LocalOffset = (inmsg & (TableSize - 1)) - 

GlobalStartMyProc; 
  HPCC_Table[LocalOffset] ^= inmsg; 
  } 
  } else if (status.MPI_TAG == FINISHED_TAG){ 
     NumberReceiving--; 
    } else { 
      abort(); } 
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], 

localBufferSize,INT64_DT, MPI_ANY_SOURCE, 
MPI_ANY_TAG, MPI_COMM_WORLD, &inreq[index]); 

} 
MPI_Waitall( NumProcs, finish_req, finish_statuses); 
HPCC_FreeBuckets(Buckets, NumProcs); 
for (j = 0; j < NumRecvs; j++) { 
    MPI_Cancel(&inreq[j]); 
    MPI_Wait(&inreq[j], &ignoredStatus); 
  } 
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BenchC 

  MPI mode 
•  All communication and timing done using MPI calls 

  UPC mode 
•  Problem I/O, setup and initialization done using MPI 
•  Core communication (gathers, scatters, collective operations), timing 

done using UPC 

  Communication method (MPI vs UPC) is selected at 
compile-time 

  UPC was incrementally added to the code, one routine at a 
time. 



Data Layout 
  Very lightweight modification to the code – little disruption 
  Create shared buffers for boundary exchanges 

•  shared double *shared buffSH[THREADS] 
•  buffSH[MYTHREAD] = (shared double *shared)upc_alloc(nec*sizeof(Element)) 

– for remote access of shared data 
•  buff = (double *) buffSH[MYTHREAD] – for local access of shared data 

buffSH[0] buffSH[1] buffSH[THREADS-1] 

SHARED 

PRIVATE 

Thread  0 Thread  1 Thread  THREADS-1 

… 

N2 

… 

Nn N1 

  buff 

 buff  buff 



BenchC UPC Communication Patterns 
  Gathers/Scatters 

 …initial ordering of data… 
 ip = ep[i]; 
 for (j = 0; j < num; j++) 

      bg[iloc1 + j] = buffSH[ip][iloc2 + j]  /*collect data from across THREADS*/ 
  Broadcasts/Reductions 

 global_normSH[MYTHREAD] = loc_val; 
 if (MYTHREAD == 0){ 
  for (ip = 1; ip < THREADS; ip++) loc_val +=global_normSH[ip]; 
  for (ip = 0; ip < THREADS; ip++) global_normSH[ip] = loc_val; 
 } 

   Code just compiles normally 
•  cc –h upc –c –h list=ms my_upc_broadcast.c 



UPC BenchC code example-Cray XT5m 
 664.  1-------<    for (i = 0; i < epnum; i++){ 
  665.  1               iloc1 = eploc [i]*len; 
  666.  1               iloc2 = eploc2[i]*len; 
  667.  1               num = (eploc[i+1] - eploc[i+0])*len; 
  668.  1               btSend += num*8;   /* sizeof(double) */ 
  669.  1               ip = ep[i]; 
  670.  1 
  671.  1         #pragma ivdep 
  672.  1 r----<>       for (j = 0; j < num; j++) buffSH[ip][iloc2+j] = 

      bg[iloc1+j]; 
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CC-6005 CC: SCALAR File = ncommsetup.c, Line = 672 
  A loop was unrolled 8 times. 

CC-6325 CC: VECTOR File = ncommsetup.c, Line = 672 
  Although A loop was marked with an IVDEP directive, it cannot be vectorized 
  because it contains one or more operations that have no vector form. 



Dynamic-Mesh Generation 
Xflow from AHPCRC 
  Tightly Couple automatic mesh generation technology within 

parallel flow solvers 
•  Mesh generation never stop and runs in-conjunction with the flow 

solver 
•  Mech continuously changes due to changes in geometry.or other 

conditions 

40 

Source:  PGAS presentation of Andrew Johnson of AHPCRC 



XFlow 
  Complex CFD applications have moving components and/or 

changing domain shapes 
•  Rotational geometries and/or flapping wings 
•  Most fluid-structure interaction applications 
•  Engines, turbines, pumps, etc. 
•  Fluid-particle flows and free-surface flow 

  Many methods have been developed to solve these types of 
applications 
•  None are ideal and all have limitations 

  MPI approach to “Dynamic-Mesh CFD” was unsuccessful in 
the past due to algorithm complexity (~1997 time frame) 

  Ultimate goal of “Dynamic-Mesh CFD” 
•  Mesh should be “dependent” on the solution by continuously changing 



XFlow 

  Fully integrate automatic mesh generation within the parallel flow solver 
•  Mesh generation never stops and runs in-conjunction with the flow 

solver 
  Element connectivity changes as required to maintain a 

“Delaunay” mesh 
  New nodes added as required to match user-specified refinement 

values 
  Existing nodes deleted when not needed 

•  Mesh continuously changes due to changes in geometry and/or the 
solution 
  Mesh size can grow or shrink at each time step 

  Very complicated method 
•  Parallelism (UPC), vectorization, dynamic data structures, solvers 

(mesh moving and fluid flow), general CFD accuracy, scalability, CAD 
links, etc. 

•  Will take time to fully evaluate 



XFlow 
  Mesh is distributed amongst all processors (fairly uniform loading) 
  Developed a fast Parallel Recursive Center Bi-section mesh partitioner 
  Each processor maintains and controls its own piece of the mesh 

•  Each processor has a list of nodes, faces, and elements 
•  Each list consists of an array of C structures (Node, Face, or Element arrays) 
•  These arrays are defined “shared” 

  Adds a “processor-dimension” to each array 
   elementsSH[proc][local-index].n[0-through-4] 
   elementsSH[proc][local-index].np[0-hrough-4] 
   elements[local-index].c[X] 
   elements[local-index].det 

  Can read-from, or write-to, other processors “entities” whenever required 
  Only 1 processor is allowed to actually change the mesh at one time 
  Lots of barriers (upc_barrier) and synchronization throughout 



XFlow 
  What this method needs… 

•  Each processor able to reference any arbitrary elements, faces, or 
nodes across entire mesh 

•  Each processor able to modify any other processors portion of the 
mesh 

•  Each processor able to search anywhere in the mesh 
•  For performance, minimize these off-processor references by using 

smart mesh partitioning techniques 
  Why MPI is not a good fit for this method 

•  Can’t arbitrarily read-from or write-to other processors data 
•  Searches “stop” at processor/partition boundaries 

  Partition boundaries are “hard” (enforced) boundaries 
•  A processor can’t change and alter another processor’s mesh 

structure 
  Why is UPC good 

•  You can do these kinds of things 
  Need to carefully use memory/process barriers 
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Dynamic Mesh 
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One-Sided Conclusions 

 They offer improved productivity of explicit 
communication codes on all platforms 

 They enable new algorithms that are difficult to 
impossible to code using two-sided communication 

 They offer improved performance on Cray platforms 
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